Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Hazard Mater ; 440: 129775, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1983444

ABSTRACT

Microbially derived dissolved organic nitrogen (mDON) is a major fraction of effluent total nitrogen at wastewater treatment plants with enhanced nutrient removal, which stimulates phytoplankton blooms and formation of toxic nitrogenous disinfection by-products (N-DBPs). This study identified denitrifiers as major contributors to mDON synthesis, and further revealed the molecular composition, influential factors and synthetic microorganisms of denitrification-derived mDON compounds leading to N-DBP formation. The maximum mDON accumulated during denitrification was 8.92% of converted inorganic nitrogen, higher than that of anammox (4.24%) and nitrification (2.76%). Sodium acetate addition at relatively high C/N ratio (5-7) favored mDON formation, compared with methanol and low C/N (1-3). Different from acetate, methanol-facilitated denitrification produced 13-69% more lignin-like compounds than proteins using Orbitrap LC-MS. The most abundant N-DBPs formed from denitrification-derived mDON were N-nitrosodibutylamine and dichloroacetonitrile (13.32 µg/mg mDON and 12.21 µg/mg mDON, respectively). Major amino acids, aspartate, glycine, and alanine were positively correlated with typical N-DBPs. Biosynthesis and degradation pathways of these N-DBP precursors were enriched in denitrifiers belonging to Rhodocyclaceae, Mycobacteriaceae and Hyphomicrobiaceae. As intensive disinfection is applied at worldwide wastewater treatment plants during COVID-19, carbon source facilitated denitrification should be better managed to reduce both effluent inorganic nitrogen and DON, mitigating DON and N-DBP associated ecological risks in receiving waters.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Water Purification , Alanine , Aspartic Acid , Carbon , Denitrification , Disinfection , Dissolved Organic Matter , Glycine , Humans , Lignin , Methanol , Nitrogen/chemistry , Sodium Acetate , Wastewater/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 832: 155090, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1773765

ABSTRACT

The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.


Subject(s)
COVID-19 , Disinfectants , Disinfectants/toxicity , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Pandemics , Quaternary Ammonium Compounds/pharmacology
3.
J Hazard Mater ; 418: 126249, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1244766

ABSTRACT

Intensified use of disinfectants to control COVID-19 could unintentionally increase the disinfection byproducts (DBPs) in the environment. In indoor spaces, it is critical to determine the optimal disinfection practice to prevent the spread of the virus while keeping DBPs at relatively low levels in the air. The formation of DBPs exceed 0.1 µg/mg while hypochlorite dosed at >10 mg/m3. The total DBP concentrations in highly disinfected places (100-200 mg/m3 hypochlorite) were as high as 66.8 µg/m3, and the Hazard Index (HI) was up to 0.84, and both values were much higher than those in less disinfected places (<10 mg/m3 hypochlorite). Taking into account the HI, formation yields and the origin of the DBPs, we recommended 10 mg/m3 as the suggested hypochlorite dose to minimize DBPs generation during routine disinfection for controlling the coronavirus. DBPs in indoor air could be eliminated by ventilation, reducing the usage of personal care products, and wiping the solid surface with water before or after disinfection. These results highlighted the necessity to control air-borne DBPs and their associated health risks arising from intensified disinfection, and will guide the further development of evidence-based regulation on DBP exposure during disinfection and improve public health protection.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Humans , Pandemics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL